

Development of robust analytical methods for the quantification of priority endocrine disruptors in water by LC-MS / MS

Sébastien Sauvé, Ken Goeury, Michèle Prévost Université de Montréal

Context

Large quantities of EDCs are potentially released in urban areas, linked to the human populations, and consumption of contraceptive pills, steroids, natural excretion, etc.

These EDCs are often released in the environment because of insufficient retention by wastewater treatment plants

Impacted surface water concentrations are typically in the ng L⁻¹ range, sufficient to elicit adverse effects on wildlife

- Behavioral impacts on fish (e.g., increased aggressiveness)
- Hormonal disorders and fertility decrease
- Effects at the population level (e.g., feminization)


```
http://www.dumez-auvergne.fr/web/genie_civil_sanitaire.html
```

Endocrine Disruptors and Early Puberty

Source: Tanner, J. M. 1973. Trend toward earlier menarche in London, Oslo, Copenhagen, the Netherlands and Hungary. *Nature* 243: 75–76.

Knowledge gaps

- EPA method 539 was recently expanded to include additional hormones and bisphenol A
- A fast and robust method able to capture the expanded list of priority EDCs and compliant with method 539.1 requirements would be desirable
- Performance criteria (accuracy, precision) may be easier to attain in drinking water, but a versatile method should also be functional for more complex matrixes (e.g., wastewater)

Purpose of work

- Develop fast, automatic, sensitive, and robust hormone detection methods
- Meet the EU (0.035 ng/L) and BC (0.5 ng/L) guidelines for ethinylestradiol
- Projects builds upon reference work of EPA method 539.1

Determination of Twelve Hormones and Bisphenol A in Drinking Water by Solid Phase Extraction and Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry

- Two approaches discussed in this presentation:
 - 1. On-line SPE UHPLC-MS/MS
 - 2. Automated off-line SPE UHPLC-MS/MS

First approach (online SPE)

 Journal of Chromatography A

 SEVIER
 journal homepage: www.elsevier.com/locate/chroma

Analysis of Environmental Protection Agency priority endocrine disruptor hormones and bisphenol A in tap, surface and wastewater by online concentration liquid chromatography tandem mass spectrometry

Ken Goeury^{a, b}, Sung Vo Duy^a, Gabriel Munoz^a, Michèle Prévost^b, Sébastien Sauvé^{a,*} ^a Department of Chemistry, Université de Montréal, Montreal, QC, Canada ^b Department of Civil, Goedsciol and Mining Engineering. École Polytechnique de Montréal, Montreal, OC, Canada

Analytical column: Hypersil Gold C18
 100 x 2.1mm (particle size: 1.9 μm)

Column temperature : 50 ° C

> Online SPE columns (x2 in series): Hypersil Gold C18 aQ each 20 x 2.1mm (particle size: 12 μm) Source : HESI (Polarity-switching ionization)

- Mobile phases :
 - > analytical pump: H₂O / MeOH / NH₄F (1 mM)
 - >SPE pump : H_2O ; 0.1% formic acid / MeOH

>Thermo TSQ Quantiva QqQ

Parameters	HPLC water	Tap water	Surface water	Wastewater (Influent)	Wastewater (Effluent)
R ²	0.9987 – 1.000	0.9982 – 0.9999	0.9930 – 0.9999	0.9990 – 0.9997	0.9906 – 0.9992
LOD (ng/L)	0.050 – 1.0	0.10 - 0.70	0.40 – 2.5	1.0 - 5.0	0.50 - 4.0
LOQ (ng/L)	0.15 - 3.0	0.30 – 2.1	1.2 – 7.5	3.0 - 15	1.5 – 12

Method validation (online SPE)

Detection limits ranging from 0.050 ng / L (HPLC water) and 5.0 ng / L (wastewater, influent)

Limits of quantification ranging from 0.15 ng / L (HPLC water) and 15 ng / L (wastewater, influent)

Linearity ranging from LOQ to 100 ng / L (HPLC water, tap water, surface water) and up to 200 ng / L (wastewater)

Coefficients of determination (R²) superior to 0.999 for most analyte/matrix combinations

Recoveries between 64% and 75%

Method validation (online SPE)

Parameters	HPLC water		Tap water		Surface water		Wastewater (Influent)		Wastewater (Effluent)	
Level	QC ₁	QC ₂	QC1	QC ₂	QC ₁	QC ₂	QC ₁	QC ₂	QC1	QC ₂
Intraday precision (%)	1.9 – 12.4	0.6 - 11.6	1.0 - 4.3	0.3 - 3.0	1.3 - 11.3	0.4 - 9.3	0.1 - 4.5	0.6 – 2.2	1.0 - 28.7	1.2 – 7.5
Interday precision (%)	1.3 - 18.3	0.5 – 19.3	1.5 – 19.6	1.5 – 16.1	0.7 – 16.3	0.7 – 9.3	0.1 - 8.7	0.3 - 4.2	0.2 – 22.7	0.1 - 14.6
Accuracy (%)	83.3 – 99.9	86.8 - 99.5	80.4 - 98.9	88.6 - 99.7	75.5 – 94.4	86.2 - 98.5	83.8 - 99.7	89.7 – 99.2	74.3 – 97.2	71.7 – 95.7

Intraday precision: variability contained below 30% (QC1) and below 20% (QC2) for all matrixes

Interday precision: variability contained below 30% (QC1) and below 20% (QC2) for all matrixes

Accuracy: minimum value above 75% (QC1 and QC2) for all matrixes

Accuracy range compliant with EPA method acceptance criteria (70-130%)

		Matrix effect		
	Tap water	Surface water	Wastewater- Influent	Wastewater- Effluent
E3	$\textbf{8.0}\pm\textbf{3.9}$	$\textbf{8.0} \pm \textbf{7.1}$	$\textbf{-34}\pm\textbf{3.3}$	13 ± 3.9
BPA	$\textbf{-12}\pm\textbf{2.7}$	$\textbf{-1.3}\pm\textbf{2.5}$	5.9 ± 2.0	20 ± 5.8
EQUIL	$\textbf{0.51} \pm \textbf{1.3}$	$\textbf{-10}\pm\textbf{3.1}$	$\textbf{-57}\pm\textbf{2.4}$	$\textbf{13}\pm\textbf{3.8}$
EQUI	$\textbf{8.1}\pm\textbf{3.4}$	20 ± 1.6	$\textbf{-20}\pm\textbf{4.0}$	39 ± 1.6
ANDRO	$\textbf{-1.3}\pm\textbf{1.2}$	$\textbf{-3.4}\pm0.90$	$\textbf{2.1}\pm\textbf{0.80}$	$\textbf{-2.1}\pm0.30$
β-Ε2	$\textbf{-3.0}\pm\textbf{1.2}$	$\textbf{-3.2}\pm\textbf{3.2}$	$\textbf{-3.8}\pm\textbf{1.4}$	$\textbf{-2.0}\pm0.50$
E1	$\textbf{2.7}\pm\textbf{2.7}$	8.5 ± 2.0	$\textbf{-8.1}\pm\textbf{3.0}$	$\textbf{-4.0} \pm \textbf{2.4}$
EE2	$\textbf{-5.5}\pm\textbf{1.2}$	$\textbf{-4.5}\pm5.0$	$\textbf{1.6} \pm \textbf{1.0}$	13 ± 7.9
NOR	$\textbf{-10}\pm\textbf{2.8}$	$\textbf{-20}\pm\textbf{6.2}$	$\textbf{-20}\pm\textbf{2.0}$	$\textbf{-20}\pm\textbf{3.8}$
α-Ε2	$\textbf{6.2}\pm\textbf{5.3}$	$\textbf{-0.90} \pm \textbf{1.5}$	$\textbf{2.8}\pm\textbf{2.3}$	$\textbf{-5.0}\pm\textbf{3.1}$
TESTO	$\textbf{-6.8} \pm \textbf{3.3}$	$\textbf{-24}\pm\textbf{1.8}$	$\textbf{-31}\pm\textbf{24}$	-15 ± 4.5
LEVO	$\textbf{-24}\pm\textbf{8.6}$	$\textbf{-23}\pm\textbf{1.7}$	$\textbf{-40}\pm\textbf{2.0}$	$\textbf{-24}\pm5.5$
MEDRO	$\textbf{-2.0}\pm\textbf{3.6}$	$\textbf{4.2}\pm\textbf{4.7}$	24 ± 1.2	$\textbf{-6.0} \pm \textbf{11}$
PROG	$\textbf{-3.5}\pm\textbf{1.4}$	$\textbf{-8.2}\pm\textbf{2.2}$	$\textbf{6.3} \pm \textbf{1.1}$	$\textbf{3.3}\pm\textbf{0.81}$

Matrix effects (online SPE)

> Matrix effects below 30% for most studied compounds

> Matrix effects well compensated using matrix-matched calibration curves

Comparison of first approach (online SPE) with other methods from literature

Literature	Studied compounds	Matrixes	Detection	Analytique column	SPE cartridge	Sample volume	Running time	Recoveries (%)	LOD (ng/L)
Vega – Morales et al. (2010)	BPA, E1, E2, E3, EE2	Sewage sample	ESI (+/-)/MS	C18	/	250 mL	29	60 -108	0.5 - 6
Fayad et al. (2013)	E1, E2, E3, EE2, LEVO, MEDRO, PROG, NORE	Affluent, Effluent	APCI (+)/MS	C18	C18	10 mL	15	64 - 101	5 - 90
Ciofi et al. (2013)	E1, α-E2, β-E2, E3, EE2	Milli-Q water (validation), surface water, wastewater	ESI (-)/MS	C18	Strata C 18E	2.5 mL	10	71 - 95	0.15 - 0.95
Guedes-Alonso et al. (2015)	E1, E2, E3, LEVO, PROG, TESTO	Effluent	ESI (+/-)/MS	C18	Oasis HLB	2.0 mL	15	43 - 95	0.5 - 13.2
Xue Lin Goh et al. (2016)	E1, E2, E3, EE2, EQUI	Affluent, Effluent	ESI (-)/MS	C18	HyperSep	5.0 mL	17	67 - 103	0.16 - 2.14
Čelić et al. (2017)	E1, E2, E3, EE2	Milli-Q water (validation), surface water, wastewater	ESI (-)/MS	C18	Hypersil Gold aQ	5.0 mL	10	76 - 106	0.030 - 0.26
This study	E1, E2, E3, EE2, EQUI, EQUIL, ANDRO, LEVO, NOR, TESTO, MEDRO, PROG, NORE, ALTRE	Milli-Q water (validation), tap water, surface water, wastewater affluent and effluent	ESI (+/-)/MS	C18	C18	10 mL	15.5	64 - 75	0.05 - 5.00

	Québec											
Compounds	Repentigny	Saint-Hilaire	Sainte- Hyacinthe	Sorel	Granby							
E3	$\textbf{0.78*} \pm \textbf{0.42}$	$\textbf{1.2}\pm\textbf{0.37}$	$0.54^{*} \pm 0.29$	ND	ND							
EQUIL	ND	ND	ND	ND	ND							
EQUI	ND	ND	ND	ND	ND							
ANDRO	ND	ND	ND	ND	ND							
β-E2	ND	ND	ND	ND	$\textbf{1.1*} \pm \textbf{0.12}$							
E1	ND	ND	ND	ND	ND							
EE2	ND	ND	ND	ND	ND							
NOR	$\textbf{0.59*} \pm \textbf{0.05}$	$\textbf{0.35*} \pm \textbf{0.01}$	ND	$\textbf{0.43*} \pm \textbf{0.04}$	$\textbf{0.87*} \pm \textbf{0.11}$							
α-E2	ND	ND	ND	ND	ND							
TESTO	ND	ND	ND	ND	ND							
LEVO	ND	ND	ND	ND	ND							
MEDRO	ND	ND	ND	ND	ND							
PROG	ND	ND	0.76*	ND	ND							

Online SPE method sensitive enough to detect EDCs in tap water

- > Tap water samples from the province of Quebec
- Relatively low occurrence for the studied sites
- Contamination levels

Individual maximum level : 1.2 ng/L (E3) Cumulative maximum level : 2.0 ng/L (Granby)

Online SPE method sensitive enough to detect EDCs in tap water

			Ontario			
Compounds	Carleton	Lindsay	Orangeville	Ottawa	Perth	Toronto
E3	ND	ND	ND	ND	ND	ND
EQUIL	ND	ND	ND	ND	ND	ND
EQUI	ND	ND	ND	ND	ND	ND
β-E2	ND	ND	ND	2.8	ND	ND
ANDRO	$\textbf{1.0}\pm\textbf{0.02}$	$\textbf{0.81} \pm \textbf{0.07}$	ND	ND	ND	ND
E1	ND	ND	ND	ND	ND	ND
EE2	ND	ND	ND	ND	ND	ND
NOR	ND	$\textbf{0.87*} \pm \textbf{0.20}$	ND	ND	ND	ND
α-E2	ND	ND	ND	ND	ND	ND
TESTO	$\textbf{0.37*} \pm \textbf{0.02}$	ND	ND	$\textbf{0.37*} \pm \textbf{0.25}$	ND	2.1
LEVO	ND	ND	ND	ND	ND	ND
MEDRO	ND	ND	ND	ND	ND	ND
PROG	ND	ND	ND	ND	ND	ND

- > Tap water sampling in the province of Ontario
- Low occurrence of EDCs regardless of sampling site location
- Contamination levels

Individual and cumulative maximal concentration : 2.8 ng/L (β -E2)

		Surface	e water		
Compounds	Chateauguay	Upstream Chambly	Repentigny	Terrebonne	Montréal
E3	ND	ND	ND	ND	ND
EQUIL	ND	ND	ND	ND	ND
EQUI	ND	ND	ND	ND	ND
ANDRO	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ
β-E2	ND	ND	ND	ND	$\textbf{1.7} \pm \textbf{0.01}$
E1	< LOQ	$\textbf{0.50} \pm \textbf{0.37}$	< LOQ	< LOQ	< LOQ
EE2	ND	ND	ND	ND	< LOQ
NOR	$\textbf{1.7} \pm \textbf{0.05}$	$\textbf{2.7} \pm \textbf{0.17}$	$\textbf{2.1}\pm\textbf{0.2}$	$\textbf{2.1}\pm\textbf{0.03}$	$\textbf{2.3} \pm \textbf{0.05}$
α-Ε2	ND	< LOQ	ND	< LOQ	ND
TESTO	ND	ND	< LOQ	ND	ND
LEVO	ND	ND	ND	ND	ND
MEDRO	ND	ND	0.40	ND	ND
PROG	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ

Method application to rivers

- Surface water sampling in the Greater Montreal area
- Low occurrence except for norethindrone systematically detected across sites

- Contamination levels
 - Individual maximum level : 2.3 ng/L (β-E2)
 - Cumulative maximum level : 4.0 ng/L

Method application to wastewater effluents and influents

		Wastewate	er (Effluent)			Wastewater (Influent)					
Compounds	Site A	Site B	Site C	Site D	Site E	Site A	Site B	Site C	Site D	Site E	Site F
E3	110 ± 1.6	95 ± 8.7	75 ± 11.3	ND	240 ± 21.9	ND	ND	ND	92 ± 9.0	ND	ND
EQUIL	4.7 ± 0.5	8.6 ± 0.6	6.4 ± 0.2	ND	7.0 ± 0.7	ND	ND	ND	ND	ND	ND
EQUI	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.6 ± 0.1
ANDRO	ND	ND	ND	ND	ND	74 ± 5.2	ND	21 ± 2.4	ND	10 ± 3.4	8.3 ± 1.8
β-E2	120 ± 4.5	45 ± 0.3	43 ± 0.2	31 ± 0.7	94 ± 4.3	ND	ND	ND	15 ± 1.3	ND	6.3 ± 1.7
E1	14 ± 0.1	15 ± 0.1	14 ± 0.3	44 ± 0.5	33 ± 1.5	ND	ND	ND	22 ± 2.8	ND	ND
EE2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NOR	ND	ND	25 ± 0.2	ND	132 ± 2.2	ND	ND	ND	ND	ND	ND
α-Ε2	< LOQ	ND	ND	ND	ND	ND	ND	ND	< LOQ	ND	ND
TESTO	42 ± 4.6	41 ± 3.6	23 ± 0.8	ND	59 ± 2.5	13 ± 0.3	< LOQ	ND	ND	ND	14 ± 0.5
LEVO	ND	ND	ND	ND	ND	150 ± 42.7	73 ± 3.7	300 ± 17.0	ND	27 ± 1.8	26 ± 1.7
MEDRO	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PROG	7.3 ± 0.3	8.6 ± 0.2	14 ± 0.7	< LOQ	13 ± 1.4	ND	< LOQ	< LOQ	ND	ND	ND

> Wastewater sampling in the Greater Montreal area

> Contamination levels

Individual maximum level : 300 ng/L (LEVO; influent) and 240 ng/L (E3; effluent)

11/13 EDCs detected at least once

Cumulative maximum level : 578 ng/L (site E; effluent) and 320 ng/L (site C; influent)

Method settings using second approach (automated off-line SPE)

> During field collection

> Sample clean-up

> NaCl (116 mg/L)

> Omadine Salt (70 mg/L)

Off-line SPE using Si-1 cartridges (Phenomenex)

Matrixes	HPLC water	Tap water	Surface water	Wastewater (Influent)	Wastewater (Effluent)			
Sample volume (mL)	1000	1000	500	250	250			
Steps	Solv	vents		Solvents				
Contrideo weeking	5.4	-011		MTBE				
Cartridge wasning	IVIO	eOH	МеОН					
Conditioning	н	H ₂ O		H ₂ O				
Sample cleaning	н	I ₂ O	H ₂ O/MeOH (9:1), 2% NH₄OH					
Cartridge rinsing	H ₂ O; 2% AA H ₂ O		H ₂ O					
Elution	M	eOH						

Tandem with HRPHS SolEx cartridges (Dionex)

Elution : DCM/Acetone (7:3)

Dionex AutoTrace 280 (Automated SPE)

- Dry concentration (N_2 ; 40°C) •
- 250 μL H₂O; 40% MeOH ٠
- IS: ٠
 - Androstenedione-¹³C₃ ٠
 - Estradiol-¹³C₆
 - Ethinylestradiol-¹³C₂
 - Progesterone-D_a
 - Mestranol-D₄

Method validation in 5 water matrices (automated off-line SPE)

Parameters	HPLC water		Тар у	Tap water Surf		face water Wastewate		r (Affluent) Wastewate		er (Effluent)
LOD	0.10	0.10 - 1.0		0.030 - 0.5		- 0.5	0.50	- 1.0	0.16 - 1.0	
LOQ	0.30	- 3.0	0.090) – 1.5	0.30	0.30 – 1.5		0.50 - 3.0		- 3.0
Range	LOQ – 100 ng/L		LOQ — 1	.00 ng/L	LOQ — 2	200 ng/L	LOQ – 200 ng/L		LOQ – 200 ng/L	
Level	QC ₁	QC ₂	QC ₁	QC ₂	QC ₁	QC ₂	QC ₁	QC ₂	QC_1	QC ₂
Intraday precision (%)	1.0-9.3	1.5 – 6.2	0.3 - 3.8	0.4 – 2.5	0.6 – 5.8	0.5 – 7.9	1.2 – 14.9	0.2 – 5.9	0.6 - 8.5	0.1 - 10.3
Interday precision (%)	2.0 - 24.2	1.2 – 14.6	0.5 - 13.3	1.1 - 11.8	2.9 – 21.0	0.4 - 10.4	0.9 – 29.7	1.6 – 29.9	0.6 - 16.1	0.8 - 15.3
Accuracy (%)	84.2 – 98.2	92.7 – 100	78.8 – 99.5	90.7 – 99.8	75.3 – 99.1	87.5 – 99.9	61.4 – 97.2	76.7 – 99.0	73.1 – 99.0	86.3 – 98.6

Intraday precision : values below 15 % for studied compounds (QC₁ et QC₂)

> Interday precision : values below 30 % for studied compounds (QC_1 et QC_2)

> Accuracy : Values superior to 70 % for the majority of analytes and matrixes

Science of the Total Environment 635 (2018) 144-155

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Seasonal variations of steroid hormones released by wastewater treatment plants to river water and sediments: Distribution between particulate and dissolved phases

Hadis Yarahmadi^{a,*}, Sung Vo Duy^b, Mounia Hachad^a, Sarah Dorner^{a,d}, Sébastien Sauvé^b, Michèle Prévost^{a,c}

^a Civil, Geological and Mining Engineering Department, Polytechnique de Montréal, CP 6079, succ. Centre-Ville, Montréal, QC H3C 3A7, Canada

^b Department of Chemistry, Université de Montréal, P.O. Box 6128, succ, Centre-Ville, Montréal, QC H3C 3J7, Canada

^c NSERC Industrial Chair on Drinking Water, Civil, Geological and Mining Engineering Department, Polytechnique de Montréal, QC, Canada

^d Canada Research Chair in Microbial Contaminant Dynamics in Source Waters, Civil, Geological and Mining Engineering Department, Polytechnique de Montréal, QC, Canada

Dissolved vs. Particulate

Table 3

Mean concentrations (ng g⁻¹) and standard deviations of steroids detected in dissolved and particulate phase of water samples taken along the river during 2 sampling campaigns. <LOD is below the detection limit.

Compound		Spring $(n = 12)$			Summer $(n = 12)$	LC	LOD	
	Diss.	Part.	% positive	Diss.	Part.	% positive	Diss. $(ng L^{-1})$	Part. $(ng g^{-1})$
E2	<lod< td=""><td>1000 ± 741</td><td>100</td><td><lod< td=""><td>646 ± 457</td><td>100</td><td>51</td><td>44</td></lod<></td></lod<>	1000 ± 741	100	<lod< td=""><td>646 ± 457</td><td>100</td><td>51</td><td>44</td></lod<>	646 ± 457	100	51	44
EE2	<lod< td=""><td>3258 ± 1338</td><td>100</td><td><lod< td=""><td>460 ± 181</td><td>100</td><td>5</td><td>23</td></lod<></td></lod<>	3258 ± 1338	100	<lod< td=""><td>460 ± 181</td><td>100</td><td>5</td><td>23</td></lod<>	460 ± 181	100	5	23
Prog	<lod< td=""><td><lod< td=""><td>0</td><td><lod< td=""><td>316 ± 211</td><td>83</td><td>5</td><td>33</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0</td><td><lod< td=""><td>316 ± 211</td><td>83</td><td>5</td><td>33</td></lod<></td></lod<>	0	<lod< td=""><td>316 ± 211</td><td>83</td><td>5</td><td>33</td></lod<>	316 ± 211	83	5	33
Testo	<lod< td=""><td>503 ± 212</td><td>100</td><td><lod< td=""><td>310 ± 112</td><td>25</td><td>3</td><td>27</td></lod<></td></lod<>	503 ± 212	100	<lod< td=""><td>310 ± 112</td><td>25</td><td>3</td><td>27</td></lod<>	310 ± 112	25	3	27
Nore	<lod< td=""><td>736 ± 439</td><td>100</td><td><lod< td=""><td><lod< td=""><td>0</td><td>23</td><td>34</td></lod<></td></lod<></td></lod<>	736 ± 439	100	<lod< td=""><td><lod< td=""><td>0</td><td>23</td><td>34</td></lod<></td></lod<>	<lod< td=""><td>0</td><td>23</td><td>34</td></lod<>	0	23	34

Yaramadhi et al 2018, Environmental Pollution

Data on Particulate Phase

Fig. 2. Steroids detected in particulate phase per unit gram of suspended particles (>0.3 µm) of raw sewage (Inf.) and WWTP effluent (Eff.).

Yaramadhi et al 2018, Environmental Pollution

Seasonal Variations

Fig. 4. Seasonal variation in total steroids levels (ng g⁻¹) in suspended particles from water samples taken along the river. Error bars represent the standar errors from duplicate samples and duplicate analysis.

Yaramadhi et al 2018, Environmental Pollution

Conclusions

- Optimisation, development and validation of efficient analytic method for detection and quantification of hormones at trace levels
- > Method applicability in several matrixes :

➢ HPLC water

- ➤Tap water
- Surface water
- > Wastewater
- Suspended particulates must be considered
- > SPE automation, using either online or off-line (Autotrace) methods
- High sensitivity methods : Sub-ng/L and ng/L
- Fast analysis time

Acknowledgments

The world leader in serving science

sebastien.sauve@umontreal.ca